
288 Chem. Educator 2002, 7, 288�291

How to Use Visual Basic to Interface Scientific Instruments to a Personal
Computer

Nikos Papadopoulos* and Maria Limniou

Laboratory of Physical Chemistry, Department of Chemistry, Aristotle University, 54006 Thessaloniki, Greece,
npapado@chem.auth.gr

Received April 19, 2002. Accepted May 9, 2002.

Abstract: Computer-controlled instruments are expensive and for this reason are not widely used in student
laboratories. In this paper we describe how to interface a data-acquisition board using Microsoft Visual Basic.
Visual Basic can be used to quickly develop an application in the Microsoft Windows environment. A single
computer system can serve as several different measuring systems by simple adaptation of the software.

Introduction How to Control the Digital to Analog Converter

Scientific instruments controlled by built-in microprocessors
or through connections to accompanying microcomputers can
be found in government, research, and industrial laboratories.
Students should have an early acquaintance with computer-
controlled instrumentation so that they learn what can be
conveniently done using a computer.

The super 14-bit A/D-D-A data acquisition card plugs into
one of the PC�s expansion slots, provides an accuracy of 14 bit
and contains 16 single-ended channels for analog-to-digital
conversion and 2 channels for digital-to-analog conversion.
This cards offers two jumper-selectable options for the voltage
output of each channel: unipolar or bipolar output swing and
2.5, 5, or 10 V reference voltage that is derived from an on-
board reference, which is either bipolar or unipolar .The
voltage input range is also jumper-configurable for unipolar or
bipolar operation and for 2.5, 5, or 10 V input range .The
manufacturer gives a conversion time less than 2 µs for digital-
to-analog operation and a conversion time less than 28 µs for
an analog-to-digital operation. The super 14-bit A/D-D-A card
has several jumper switches that must be set to define its
operation. These are used to select the card�s D/A output
range, its A/D input range, and its I/O base address. The card
uses 16 consecutive address locations in the PC�s I/O space.
Interface cards with similar characteristics can be obtained
commercially from many different manufacturers [15].

Computer-controlled instruments are expensive and for this
reason are not widely used in student laboratories. A
laboratory interfacing system using a personal computer
provides a relatively inexpensive alternative. Up to now the
principal obstacle in building homemade microprocessor-
controlled instrumentation has been the time and effort needed
to create the software [1�3].

To perform any task, microprocessors must be programmed
using mathematical and logical operations. Program
development using a character-based programming language is
tedious and time-consuming. The most difficult part of writing
an application program in a conventional language is the
creation of a user-friendly interface, that is, a user interface
that is readily identifiable and easy to understand. Today, there
are graphics-program environments that make it easy to build
the front panel of a �virtual instrument� with its knobs,
switches, graphs and displays on a computer screen [4�13].
Rather than having to write numerous lines of code to describe
the appearance and location of interface elements, we can
simply add prebuilt objects into place on the screen. Visual
Basic is an environment that provides the necessary tools to
build very rapidly user-friendly interfaces in the Windows
operating system. The applications that are created run on
Windows PCs without additional licensing.

The following example illustrates how easy it can be to
create a useful instrumentation application using Visual Basic.
To demonstrate how this is done, we describe the steps used to
create a simple application that controls the output of the
digital-to-analog converter of the interface card. The
application consists of a label and a scroll bar. When the user
moves the scroll bar, the numerical value on the label changes
from 2.500 to �2.500 V and at the same time this voltage value
appears at the output of the digital-to-analog converter. The
label and the scroll bar are placed in a form. For example in
the illustration in Figure 1, the voltage output of the D/A
converter is at a setting of +0.882 V on a scale of +2.500 to �
2.500 V.

Some years ago, interfacing an analog instrument to a digital
computer required considerable expertise in both analog and
digital electronics. Now, the situation has changed. Today, it is
possible to purchase very satisfactory, off-the-shelf interface
cards for a personal computer at reasonable cost. The interface
board that we have used in this work is the super 14-bit A/D-
D/A card from Decision Computer International, Taipei, which
is an ISA slot interface card and is suitable for rather old
computers. More information on this card can be found at the
companies Internet site [14].

The form acts as a window that permits the program
operator to communicate with the computer and the instrument
to which it is interfaced. Rather than writing numerous lines of
code to describe the appearance and location of interface
elements, we simply add prebuilt objects into place on screen.
Visual Basic provides a set of tools that we use at design time
to place controls on a form. Forms and controls are the basic
building blocks used to create the user interface, the visual part
of the application with which the user will interact. We use the

© 2002 Springer-Verlag New York, Inc., S1430-4171(02)05595-4, Published on Web 9/13/2002, 10.1007/s00897020591a, 750288np.pdf

Visual Basic to Interface Scientific Instruments to a Personal Computer Chem. Educator, Vol. 7, No. 5, 2002 289

Figure 1. A simple application

Figure 2. The toolbox and the properties window.

Figure 3. The Hscroll_change event subroutine.

toolbox to draw a scroll bar and a label on the form (See
Figure 2).

Each form and control in Visual Basic has a predefined set
of events. If one of these events occurs and there is code in the
associated event procedure, Visual Basic invokes that code.
For example, whenever the user moves the scroll bar, at run
time the change event procedure (Figure 3) is invoked. In
traditional or procedural applications, the application itself
controls which portions of code will execute and in what
sequence [16�19]. Execution starts with the first line of code
and follows a predefined path throughout the application,
calling procedures as needed. In an event-driven application,
the code does not follow a predetermined path, instead it
executes different code sections in response to events. Events
can be triggered by the user's actions, by messages from the

system or other applications, or even from the application
itself. The sequence of these events determines the sequence in
which the code executes; thus, the path through the
application's code differs each time the program runs. Each
control on a form has a corresponding set of event procedures
associated with it.

We place code in the change event procedure (Figure 3) to
control the output of the digital-to-analog converter of the
interface card. The text displayed in the label is controlled by
the label�s caption property, which can be set at design time in
the properties window or at run time by assigning it in code.
We can set properties to specify the appearance, operation,
labeling, range, precision, and format of the controls. Once we
have configured the properties of a control we can
programmatically access or change the values of any property
from within our program.

In the DOS version of the Basic programming language the
inp function and the out command gave the user the ability to
send and return bytes to and from the hardware I/O ports.
Visual Basic�s repertoire of functions and commands does not
include equivalent functions. Visual Basic has no built-in way
to access ports; however, Visual Basic accepts access functions
and procedures in the form of dynamic link libraries (DLL)
that are written in other programming languages or are
included in the windows operating system. The program can
communicate with the card through a DLL that emulates the
inp function and the out commands of Basic in the Visual
Basic programming environment. DLLs with this functionality
can be found in the Internet for 16-bit and 32-bit environments.
The DLL file that gives input�output capability to Visual Basic
must be included in the system subdirectory of the Windows
file. These DLLs, and much more, can be found at the Internet
site in reference 20.

Many manufacturers of plug-in digital-to-analog acquisition
boards provide Visual Basic custom controls for data
acquisition. These custom controls provide the drivers for the
interface card. An interface-card driver contains high-level
functions for controlling the specific acquisition board so that
it is not necessary to write a program to access the cards�
registers. Many software malfunctions stem from poor driver
performance or poor driver documentation. Sometimes it is
preferable to write and test your own driver for the interface
card and find out what are the limitations imposed by the
hardware. This is not a hard task. The user manuals of most
interface cards provide detailed information about the steps
required to perform an analog-to-digital conversion. With the
exception of very fast phenomena, all of these steps can be
coded in Visual Basic without sacrificing measurement
accuracy. We give as an example (Figure 4) the subroutine that
can be used to drive the super 14-bit A/D-D/A card.

In order to trigger a digital-to-analog conversion with the
super 14-bit A/D-D/A card we must output a value between 0
(�2.5 V) and 16383 (2.5 V). This value must be separated into
a high byte and a low byte, and then the high byte must be
output port address &H165 (in hexadecimal) and the low byte
to the address &H164 (in hexadecimal). We have written a
subroutine that takes a numerical value as input and instructs
the digital-to-analog converter to translate this value to an
output voltage. The digital-to-analog converter can be used to
generate simple waveforms such as sine square and triangle
waves or more complex completely user-defined waveforms.

DLL procedures reside in files that are external to our
application, and for this reason we must specify where the

© 2002 Springer-Verlag New York, Inc., S1430-4171(02)05595-4, Published on Web 9/13/2002, 10.1007/s00897020591a, 750288np.pdf

290 Chem. Educator, Vol. 7, No. 5, 2002 Papadopoulos and Limniou.

Figure 4. The digital to analog conversion subroutine.

Figure 5. The declare statements for the input DLL.

Figure 6. The analog-to-digital-conversion subroutine.

procedures are located and identify the arguments with which
they should be called. We provide this information with a
declare statement (Figure 5). Once we have declared a DLL
procedure, we can use it in our code just like a native Visual
Basic procedure.

One of the usual tasks that students perform in an
experiment is to gather data for the study of a chemical
phenomenon. Usually the students collect the data manually,
and then they plot the data to create a visual representation of
the numerical data. A data-acquisition board can be used to
acquire data directly from laboratory equipment. As old-model
instruments are gradually replaced by newer models, the old
instruments are usually abandoned. These instruments can be
used in the student laboratory. Older analog instruments
usually have a connection for a strip-chart recorder. The
instrument�s output must often be conditioned to provide
signals suitable for the digital-to-analog-conversion board.
External circuitry can improve the accuracy of the data.
Amplifiers can boost the level of the input signal to better
match the range of the digital-to-analog converter, thus
increasing the resolution and sensitivity of the measurement.
Additionally, external circuitry can include analog filters to
reject unwanted noise. More information on hardware on
signal conditioning can be found at National Semiconductor�s
Web site [21].

Code in Visual Basic is stored in modules. Simple
applications can consist of just a single form, and all of the
code in the application resides in that form module. Code that
is not related to a specific form or control can be placed in a
different type of module, a standard module. Standard modules
are containers for procedures and declarations commonly
accessed by other modules within the application. They can
contain global (available to the whole application) or module-
level declarations of variables, constants, types, external
procedures, and global procedures. The code that we write in a
standard module is not necessarily tied to a particular
application; if we are careful not to reference forms or controls
by name, a standard module can be reused in many different
applications.

Analog to Digital Conversion

The following example describes the steps used to build a
simple data-acquisition application with the super 14-bit A/D-
D-A card. In order to trigger an analog-to-digital conversion
with this card we must do the following:

(1) select the channel,
(2) clear the A/D register,
(3) start the conversion,
(Loop back the high and low byte eight times.)
(4) read the high byte,
(5) read the low byte,
(6) calculate the value.
A computer-controlled acquisition system (such as in Figure

7) samples data at a user-specified rate. Visual Basic provides
a timer control that uses the internal timer of the computer that
ticks about 18.2 times a second. We use this timer as the time
base of our recorder. Data is sampled continuously at a rate of
about a data point every 50 ms. With this sampling rate about
20 points are sampled every second. This relatively slow
sampling rate is adequate for most student experiments, and
sometimes it is even desirable to work with a lower sampling

© 2002 Springer-Verlag New York, Inc., S1430-4171(02)05595-4, Published on Web 9/13/2002, 10.1007/s00897020591a, 750288np.pdf

Visual Basic to Interface Scientific Instruments to a Personal Computer Chem. Educator, Vol. 7, No. 5, 2002 291

Figure 7. A data-acquisition application

+ V
Thermistor
(variable
resistance)

Constant voltage
supply

Input in Card

Figure 8. A typical microcomputer�s sensory interface.

rate. Information on how to obtain faster sampling rates can be
found at the Web sites in reference 22.

At the end of the experiment the student can save the
experimental data on a disk in a sequential file. Data collected
in the form of sequential or random-access files from Visual
Basic are directly compatible with many spreadsheet programs,
for example, Excel. Computer programs can be written to
facilitate complicated calculations required to derive
meaningful values from raw experimental data. Data treatment
can be accomplished with a commercial software package and
the students can take advantage of the very good graphics and
hard copy in the forms. It also gives an opportunity for
students, while they are treating their results, to gain some
experience with data-handling techniques and the use of the
spreadsheet programs.

Sensory interfaces (Figure 8) are often used in the student
laboratories. Sensors provide information in the form of an
electrical signal related to the physical or chemical

environment. A thermistor can be interfaced to a digital
computer to follow a variety of temperature-versus-time
experiments in general chemistry [23].

References and Notes

1. Muyskens, M. J. Chem. Educ. 1997, 74 (7), 850.
2. Roldan, E.; Dominquez, M.; Arjona, D. Computers & Chemistry

1986, 10 (3), 187.
3. He, P.; Faulkner, L. J. Chem. Inf. Comput. Sci. 1985, 25, 275�282.
4. Baumann, M. Computers & Education 2001, 36 (3), 245�264.
5. David, F.; Papadopopoulos, N. Electoanalysis 1991, 3, 721.
6. David, F.; Ougenoune, H.; Bolios, A.; Papadopoulos, N. Anal. Chim.

Acta 1994, 292, 297�304.
7. Spanoghe, P;.Cocquyt, J; Van der Meeren, P.; J. Chem. Educ. 2001,

78 (3), 338.
8. Gostowski, R. J. Chem. Educ. 1996, 73 (12), 1103.
9. Drew, M. S. J. Chem. Educ. 1996, 73 (12), 1107.
10. Muyskens, A. M.; Glass, S. V.; Wietsma, T. W.; Gray, T. M.; J.

Chem. Educ. 1996, 73 (12), 1112.
11. Ogren, P. J.; Jones, T. P.; J. Chem. Educ. 1996, 73 (12), 1115.
12. Allerhand, A.; Galuska, A. Chem. Educator [Online] 2000, 5 (2),

71�76; DOI 10.1007/s00897990368a.
13. Ritter, D; Johnson, M. J. Chem. Educ. 1997, 74, 120.
14. Decision Computer. www.decision.com.tw (accessed Aug 2002).
15. (a) Datal. http://store.datel.com (accessed Aug 2002); (b) Advantech.

www.advantech.com (accessed Aug 2002); (c) Delta Tech.
www.delta-technical.com (accessed Aug 2002).

16. Halvorson, M. Step by Step (Microsoft Visual Basic 6.0); Microsoft
Press: Redmond, WA, 1998.

17. Eidahl, L. D. Edition Using Visual Basic 6; QUE Corporation:
Indianapolis, IN, 1999.

18. Petroutsos, E. Visual Basic 6; SUBEX: Berkeley, CA 1998.
19. Kofler, M. Visual Basic Database Programming; Addision-Wesley:

Reading, MA, 2002.
20. Axelson, J. Parallel Port Central. http://www.lvr.com/parport.htm

(accessed Aug 2002).
21. National Semiconductor, Application Notes and Other Documents.

http://www.national.com/apnotes/ (accessed Aug 2002).
22. (a) Stopuhr. http://www.activevb-archiv.de/vb/VBtips/VBtip0011.

shtml (accessed Aug 2002); (b) vbapi.com�part of the VB-World
Network http://www.vbapi.com/ref/funcc.html#timers (accessed Aug
2002).

23. Wong, S.; Popovich, N. D.; Coldiron, S. J. J. Chem. Educ. 2001, 78
(6), 798.

© 2002 Springer-Verlag New York, Inc., S1430-4171(02)05595-4, Published on Web 9/13/2002, 10.1007/s00897020591a, 750288np.pdf

http://www.decision.com.tw/
http://store.datel.com/
http://www.advantech.com/
http://www.delta-technical.com/
http://www.lvr.com/parport.htm
http://www.national.com/apnotes/
http://www.activevb-archiv.de/vb/VBtips/VBtip0011.shtml
http://www.activevb-archiv.de/vb/VBtips/VBtip0011.shtml
http://www.vbapi.com/ref/funcc.html

